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1 Introduction

Fundamental M-theory in the low-energy limit is generally believed to be effectively de-

scribed by D = 11 supergravity [1–3]. This suggests that brane solutions in the latter

theory furnish classical soliton states of M-theory, motivating considerable interest in this

subject. There is particular interest in finding D = 11 M-brane solutions that reduce

to supersymmetric p-brane solutions (that saturate the Bogomol’nyi-Prasad-Sommerfield

(BPS) bound) upon reduction to 10 dimensions. Some supersymmetric BPS solutions of

two or three orthogonally intersecting 2-branes and 5-branes in D = 11 supergravity were

obtained some years ago [4], and more such solutions have since been found [5].

Recently interesting new supergravity solutions for localized D2/D6, D2/D4, NS5/D6

and NS5/D5 intersecting brane systems were obtained [6–10]. By lifting a D6 (D5 or

D4)-brane to four-dimensional self-dual geometries embedded in M-theory, these solutions

were constructed by placing M2- and M5-branes in different self-dual geometries. A special

feature of this construction is that the solution is not restricted to be in the near core region

of the D6 (or D5) brane, a feature quite distinct from the previously known solutions [11,
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12]. For all of the different BPS solutions, 1/4 of the supersymmetry is preserved as a result

of the self-duality of the transverse metric. Moreover, in [13], partially localized D-brane

systems involving D3, D4 and D5 branes were constructed. By assuming a simple ansatz

for the eleven dimensional metric, the problem reduces to a partial differential equation

that is separable and admits proper boundary conditions.

Motivated by this work, the aim of this paper is to construct the fully localized su-

pergravity solutions of D2 (and NS5) intersecting D6 branes without restricting to the

near core region of the D6 by reduction of ALE geometries lifted to M-theory. Our main

motivation for considering ALE geometries (and specially multi-center Gibbons-Hawking

spaces) is that in all previously constructed M-brane solutions [6–10], we have at most one

parameter in each solution. For example, NUT/Bolt parameter n for embedded transverse

Taub-NUT/Bolt spaces, Eguchi-Hanson parameter a in the case of embedded transverse

Eguchi-Hanson geometry and a constant number with unit of length that is related to

the NUT charge of metric at infinity obtained from Atiyah-Hitchin metric in the case of

embedded transverse Atiyah-Hitchin geometry. Moreover, in all the above mentioned so-

lutions, the metric functions depend (at most) only on two non-compact coordinates. The

metric functions in the multi-center Gibbons-Hawking geometries depend (in general) on

more physical parameters, hence their embeddings into M-theory yield new results for the

metric functions with both non-compact and compact coordinates.

We have obtained several different supersymmetric BPS solutions of interest. We

should mention the condition of preserved supersymmetry is distinct from that of BPS

which is defined in the bosonic theory. Due to the general M2 and M5 ansatze that we con-

sider in sections 4, 5 and 6, the metric functions for all M2 solutions, as well as M5 solutions

are harmonic. Hence all our brane configurations are determined by solutions of Laplace

equations and so they obey the BPS property. Specifically, since in the 11 dimensional met-

ric for an M2-brane, the M2-brane itself only takes up two of the 10 spatial coordinates,

we can embed a variety of different geometries. These include the double Taub-NUT met-

ric, two-center Eguchi-Hanson metric and products of these 4-dimensional metrics. After

compactification on a circle, we find the different fields of type IIA string theory.

In our procedure we begin with a general ansatz for the metric function of an M2 brane

in 11-dimensional M-theory. After compactification on a circle (T 1), we find a solution to

type IIA theory for which the highest degree of the field strengths is four. Hence the non-

compact global symmetry for massless modes is given by the maximal symmetry group

E1(1) = R, without any need to dualize the field strengths [14]. For the full type IIA

theory, only the discrete subgroup E1(1)(Z) = Z survives, in particular by its action on the

BPS spectrum and as a discrete set of identifications on the supergravity moduli space.

This subgroup is the U-duality group for all type IIA theories we find in this paper.

The outline of our paper is as follows. In section 2, we discuss briefly the field equations

of supergravity. In section 3 we review briefly the ALE geometries and then in section 4, we

consider the embedding of four-dimensional multi (and explicitly double) -center Gibbons-

Hawking spaces in M-theory. These spaces are characterized with some (two) NUT charges.

Moreover, we consider the multi (and especially two-center) Eguchi-Hanson spaces and

find analytical exact solutions for the M2-brane functions. We compare then our analytical
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solutions with the numerical solutions found a few years ago. In section 5, we present the

M5-brane solutions. These solutions also are exact and analytic. In section 6, we then

discuss embedding products of Gibbons-Hawking metrics in M2-brane solutions. All of

the solutions preserve some of the supersymmetry as we present the details in section 7.

In section 8, we consider the decoupling limit of our solutions and find evidence that in

the limit of vanishing string coupling, the theory on the world-volume of the NS5-branes

is a new little string theory. Moreover, we apply T-duality transformations on type IIA

solutions and find type IIB NS5/D5 intersecting brane solutions and discuss the decoupling

limit of the solutions. We wrap up then by some concluding remarks and future possible

research directions.

2 Supergravity solutions

The equations of motion for eleven dimensional supergravity when we have maximal sym-

metry (i.e. for which the expectation values of the fermion fields is zero), are [15]

Rmn −
1

2
gmnR =

1

3

[
FmpqrF

pqr
n − 1

8
gmnFpqrsF

pqrs

]
(2.1)

∇mF
mnpq = − 1

576
εm1...m8npqFm1...m4

Fm5...m8
(2.2)

where the indices m,n, . . . are 11-dimensional world space indices. For an M2-brane, we

use the metric and four-form field strength

ds211 = H(y, r, θ)−2/3
(
−dt2 + dx2

1 + dx2
2

)
+H(y, r, θ)1/3

(
ds2

4(y) + ds24(r, θ)
)

(2.3)

and non-vanishing four-form field components

Ftx1x2y = − 1

2H2

∂H

∂y
(2.4)

Ftx1x2r = − 1

2H2

∂H

∂r
(2.5)

Ftx1x2θ = − 1

2H2

∂H

∂θ
(2.6)

and for an M5-brane, the metric and four-form field strength are

ds2 = H(y, r, θ)−1/3
(
−dt2 + dx2

1 + . . . + dx2
5

)
+H(y, r)2/3

(
dy2 + ds24(r, θ)

)
(2.7)

Fm1...m4
=
α

2
ǫm1...m5

∂m5H , α = ±1 (2.8)

where ds2
4(y) and ds24(r) are two four-dimensional (Euclideanized) metrics, depending on

the non-compact coordinates y and r, respectively and the quantity α = ±1, which cor-

responds to an M5-brane and an anti-M5-brane respectively. The general solution, where

the transverse coordinates are given by a flat metric, admits a solution with 16 Killing

spinors [16].
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The 11D metric and four-form field strength can be easily reduced down to ten dimen-

sions using the following equations

gmn =

[
e−2Φ/3

(
gαβ + e2ΦCαCβ

)
νe4Φ/3Cα

νe4Φ/3Cβ ν2e4Φ/3

]
(2.9)

F(4) = F(4) + H(3) ∧ dx10. (2.10)

Here ν is the winding number (the number of times the M-brane wraps around the

compactified dimensions) and x10 is the eleventh dimension, on which we compactify. The

indices α, β, · · · refer to ten-dimensional space-time components after compactification.

F(4) and H(3) are the RR four-form and the NSNS three-form field strengths corresponding

to Aαβγ and Bαβ.

The number of non-trivial solutions to the Killing spinor equation

∂Mε+
1

4
ωabMΓabε+

1

144
Γ npqr
M Fnpqrε−

1

18
ΓpqrFmpqrε = 0 (2.11)

determine the amount of supersymmetry of the solution, where the ω’s are the spin con-

nection coefficients, and Γa1...an = Γ[a1 . . .Γan]. The indices a, b, . . . are 11 dimensional

tangent space indices and the Γa matrices are the eleven dimensional equivalents of the

four dimensional Dirac gamma matrices, and must satisfy the Clifford algebra
{
Γa,Γb

}
= −2ηab. (2.12)

In ten dimensional type IIA string theory, we can have D-branes or NS-branes. Dp-

branes can carry either electric or magnetic charge with respect to the RR fields; the metric

takes the form

ds210 = f−1/2
(
−dt2 + dx2

1 + . . .+ dx2
p

)
+ f1/2

(
dx2

p+1 + . . .+ dx2
9

)
(2.13)

where the harmonic function f generally depends on the transverse coordinates.

An NS5-brane carries a magnetic two-form charge; the corresponding metric has

the form

ds210 = −dt2 + dx2
1 + . . .+ dx2

5 + f
(
dx2

6 + . . .+ dx2
9

)
. (2.14)

In what follows we will obtain a mixture of D-branes and NS-branes.

3 Gibbons-Hawking Spaces

The only instantons (in A-D-E classification) that their metrics could be written in known

closed forms, are Ak series where the metrics are given by:

ds2 = V −1(dt+ ~A · d~x)2 + V γijdx
i · dxj (3.1)

where V , Ai and γij are independent of t and ∇V = ±∇× ~A; hence ∇2V = 0. The most

general solution for V is then V =
∑k

i=1
m

|~x−~xi| . The metrics (3.1) describe the Gibbons-

Hawking multi-center metrics. The k = 1 corresponds to flat space and k = 2 corresponds

to Eguchi-Hanson metric. The standard form of Eguchi-Hanson metric is given by [17]

ds2EH =
r2

4g(r)
[dψ + cos(θ)dφ]2 + g(r)dr2 +

r2

4

(
dθ2 + sin2(θ)dφ2

)
(3.2)
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where g(r) = r4

r4−a4 . If we change the coordinates of (3.2) to (R,Θ,Φ,Ψ) by

R =
1

a

√
r4 − a4 sin2 θ (3.3)

Θ = tan−1

(√
r4 − a4

r2
tan θ

)
(3.4)

Φ = ψ (3.5)

Ψ = 2φ (3.6)

where a ≤ R < ∞, 0 ≤ Θ ≤ π, 0 ≤ Φ ≤ 2π, 0 ≤ Ψ ≤ 4π, then the Eguchi-Hanson

metric (3.2) transforms into the two-center Gibbons-Hawking form (3.1)

ds2 = H(R, θ)
(
dR2 +R2(dΘ2 + sin2 ΘdΦ2)

)
+

1

H(R,Θ)

(
a

8
dΨ + Y (R, θ)dΦ

)2

(3.7)

where

H(R,Θ) =
a

8

{
1

R−R1
+

1

R−R2

}
(3.8)

and

Y (R, θ) =
a

8

(
R cos θ − a√

R2 + a2 − 2Ra cos Θ
+

R cos θ + 2c√
R2 + a2 + 2Ra cos Θ

)
. (3.9)

In equations (3.8) and (3.9), R1 = (0, 0, a) and R2 = −R1 are Euclidean position

vectors of two nut singularities.

Here we consider the extension of metrics (3.1) by considering

Vǫ = ǫ+

k∑

i=1

mi

| ~x− ~xi |
. (3.10)

The hyper-Kahler metrics (3.1) with Vǫ pose a translational self-dual (or anti-self-dual)

Killing vector Kµ, that means

∇µKν = ±1

2

√
det gǫρλµν∇ρKλ. (3.11)

This (anti-) self-duality condition (3.11) implies the three-dimensional Laplace equation for

Vǫ with solutions (3.10). For ǫ 6= 0 in (3.10), the metrics (3.1) describe the asymptotically

locally flat (ALF) multi Taub-NUT spaces. The removal of nut singularities impliesmi = m

and t a periodic coordinate of period 8πm
k .

4 M2 solutions over Gibbons-Hawking space

In this section, we consider the Gibbons-Hawking space with k = 2 and metric function

Vǫ with ǫ 6= 0, as a part of transverse space to M2 and M5-branes. The four-dimensional

Gibbons-Hawking metric is

ds2GH = Vǫ(r, θ){dr2 + r2(dθ2 + sin2 θdφ2)} +
(dψ + ω(r, θ)dφ)2

Vǫ(r, θ)
(4.1)

– 5 –
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where

ω(r, θ) = n1 cos θ +
n2(a+ r cos θ)√
r2 + a2 + 2ar cos θ

(4.2)

Vǫ(r, θ) = ǫ+
n1

r
+

n2√
r2 + a2 + 2ar cos θ

. (4.3)

The eleven dimensional M2-brane with an embedded transverse Gibbons-Hawking space is

given by the following metric

ds211 = H(y, r, θ)−2/3
(
−dt2 + dx2

1 + dx2
2

)
+H(y, r, θ)1/3

(
dy2 + y2dΩ2

3 + ds2GH
)

(4.4)

and non-vanishing four-form field components are given by eqs. (2.4), (2.5) and (2.6).

The metric (4.4) is a solution to the eleven dimensional supergravity equations provided

H (y, r, θ) is a solution to the differential equation

2ry sin θ
∂H

∂r
+ y cos θ

∂H

∂θ
+ r2y sin θ

∂2H

∂r2
+ y sin θ

∂2H

∂θ2
+

+

(
r2y sin θ

∂2H

∂y2
+ 3r2 sin θ

∂H

∂θ

)
V (r, θ) = 0. (4.5)

We notice that solutions to the harmonic equation (4.5) determine the M2-brane metric

function everywhere except at the location of the brane source. To maximize the symmetry

of the problem, hence simplify the analysis, we consider the M2-brane source is placed at

the point y = 0, r = 0. Substituting

H(y, r, θ) = 1 +QM2Y (y)R(r, θ) (4.6)

where QM2 is the charge on the M2-brane, we arrive at two differential equations for Y (y)

and R(r, θ). The solution of the differential equation for Y (y) is

Y (y) ∼ J1(cy)

y
(4.7)

which has a damped oscillating behavior at infinity. The differential equation for R(r, θ) is

2r
∂R(r, θ)

∂r
+ r2

∂2R(r, θ)

∂r2
+

cos θ

sin θ

∂R(r, θ)

∂θ
+
∂2R(r, θ)

∂2θ
= c2r2V (r, θ)R(r, θ) (4.8)

where c is the separation constant. First, we are interested in the solutions of (4.8) far

enough from the locations of NUT charges. So, we take r ≫ a, hence we have 1
r′ =

1

r
√

(a

r
)2+1+2(a

r
) cos θ

=
∑
l=0

Pl(− cos θ) al

rl+1 where r and r′ are the distances to the two NUT

charges n1 and n2, located on z-axis at (0, 0, 0) and (0, 0,−a) (figure 1). We keep the first

two terms in the expansion of 1/r′, corresponding to l = 0, 1. The differential equation (4.8)

turns to

2r
∂R(r, θ)

∂r
+r2

∂2R(r, θ)

∂r2
+

cos θ

sin θ

∂R(r, θ)

∂θ
+
∂2R(r, θ)

∂2θ
= c2r2

{
ǫ+
N

r
− ñ2 cos θ

r2

}
R(r, θ) (4.9)

where N = n1 + n2 and ñ2 = an2.

– 6 –
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Figure 1. The geometry of charges.

By substituting R(r, θ) = f(r)g(θ), we find two separated second-order differential

equations, given by

r2
d2f(r)

dr2
+ 2r

df(r)

dr
− c2(ǫr2 +Nr +M)f(r) = 0 (4.10)

d2g(θ)

dθ2
+

cos θ

sin θ

dg(θ)

dθ
+ c2(M + ñ2 cos θ)g(θ) = 0 (4.11)

where M is the second separation constant.

We change the coordinate r to r = 1
z , hence the differential equation (4.10) changes to

d2f(z)

dz2
− c2

(
ǫ

z4
+
N

z3
+
M

z2

)
f(z) = 0. (4.12)

The solutions to equation (4.12) are z times the Whittaker functions. So, the most general

solution to (4.10) which vanishes at infinity is

f(r) =
1

r
WW

(
− cN

2
√
ǫ
,

√
1 + 4Mc2

2
, 2c

√
ǫr

)
(4.13)

where WW (α, β, x) is the Whittaker-Watson function, related to confluent hypergeometric

function U , by

WW (α, β, x) = e−1/2xx1/2+βU(1/2 + β − α, 1 + 2β, x). (4.14)

In figure 2, the behavior of f(r) is given where we choose the separation constant c = 1, ǫ =

1 and M = 0.005, respectively. The solutions to equation (4.11), in terms of ξ = 1− cos θ,

are given by

g(θ) = HC(ξ)

{
C1 + C2

∫
1

ξ(ξ − 2)H2
C(ξ)

dξ

}
(4.15)
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Figure 2. Solutions to eq. (4.10) with different values for N.

where HC(ξ) stands for HC(0, 0, 0, 2ñ2c
2,−c2(M + ñ2),

1
2ξ); the Heun-C function. The

Heun-C differential equation and functions HC(α, β, γ, δ, λ, x) are reviewed briefly in ap-

pendix A. The first part of (4.15) which is proportional to HC(ξ), is an analytical function

at ξ = 0. However the second part of (4.15) is not an analytical function at ξ = 0. To un-

derstand better the behavior of the second part of solution (4.15), we consider the function

h(ξ) =
1

(ξ − 2)H2
C(ξ)

(4.16)

and use the Maclaurin’s theorem, we get a power series expansion as

h(ξ) =

∞∑

n=0

anξ
n = a0 + a1ξ + a2ξ

2 + · · ·. (4.17)

Here, the first few coefficients are given by

a0 = −1

2
(4.18)

a1 = −M + ñ2

2
c2 − 1

4
(4.19)

a2 = −3Mc2

8
− 5M2c4

16
− 5Mñ2c

4

8
− 5ñ2

2c
4

16
− ñ2c

2

4
− 1

8
. (4.20)

In figure 3, for instance the plot of h(ξ) versus ξ is given where we set c = 1, ñ2 = 1 and

M = 1. In this figure, h(ξ) is expanded up to order of ξ5 as

h(ξ) = −1

2
− 5

4
ξ − 2ξ2 − 191

72
ξ3 − 7345

2304
ξ4 − 415937

115200
ξ5 +O(ξ6). (4.21)

The series expansion (4.17) yields the final form of the solution g(θ) as

g(θ) = HC(1−cos θ)

{
Cc,M−

1

2
C ′
c,M

(
ln(1−cos θ)−

(
M + ñ2

2
c2+

1

4

)
(1−cos θ)+· · ·

)}
(4.22)
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Figure 3. h(ξ) is a well defined function around origin O.

Figure 4. The graph of g(θ) keeping two terms of the series.

or

g(θ) = Cc,M

{(
1 −

(
M + ñ2

2
c2
)

(1 − cos θ) +

+

(
M2c4

16
+
Mc4ñ2

8
+
c4ñ2

2

16
− Mc2

8

)
(1 − cos θ)2 +O(1 − cos θ)3

)}
+

+C ′
c,M

{
ln(1 − cos θ)

{
1 −

(
M + ñ2

2
c2
)

(1 − cos θ) +

+

(
M2c4

16
+
Mc4ñ2

8
+
ñ2

2c
4

16
− Mc2

8

)
(1 − cos θ)2 +O(1 − cos θ)3

}
+

+

{(
1

2
+ (M + ñ2)c

2

)
(1 − cos θ) +

+

(
Mc2

8
+

1

8
− 3c4ñ2

2

16
− 3ñ2Mc4

8
− 3M2c4

16

)
(1 − cos θ)2 +O(1 − cos θ)3

}}
.

(4.23)

The constant C ′
c,M should be chosen zero, otherwise we get logarithmic divergence at

θ = 0 for r ≫ a. A typical functional form of g(θ) is shown in figure 4, where we set

ñ2 = M = c = Cc,M = 1 and C ′
c,M = 0. So, the solution to the differential equation (4.9)

– 9 –
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or the asymptotic solution to (4.8) is

R(r, θ) =
Cc,M
r

WW

(
− cN

2
√
ǫ
,

√
1 + 4Mc2

2
, 2c

√
ǫr

)
HC

(
0, 0, 0, 2ñ2c

2,−(M + ñ2)c
2,

1

2
ξ

)
.

(4.24)

Turning next to find the exact solution to (4.8), we change the coordinates r, θ to µ, λ,

defined by

µ = r′ + r (4.25)

λ = r′ − r (4.26)

where µ > a and −a ≤ λ ≤ a. We notice that the coordinate transformations (4.25)

and (4.26) are well defined everywhere except along the z-axis. The differential equa-

tion (4.8), in the new coordinates, turns out to be

−2λ
∂R

∂λ
+ (a2 − λ2)

∂2R

∂λ2
+ 2µ

∂R

∂µ
+ (µ2 − a2)

∂2R

∂µ2

= c2
[
1

4
ǫ(µ2 − λ2) +

1

2
µ(n1 + n2) +

1

2
λ(n1 − n2)

]
R. (4.27)

This equation is separable and yields

2λ
1

G

∂G

∂λ
+ (λ2 − a2)

1

G

∂2G

∂λ2
− 1

2
c2(n2 − n1)λ− 1

4
ǫc2λ2 −Mc2 = 0 (4.28)

2µ
1

F

∂F

∂µ
+ (µ2 − a2)

1

F

∂2F

∂µ2
− 1

2
c2(n1 + n2)µ− 1

4
ǫc2µ2 −Mc2 = 0 (4.29)

upon substituting in R(µ, λ) = F (µ)G(λ) whereM is the separation constant. The solution

to equation (4.28) is given by

G(λ) = H̃C(λ)

{
ĝc,M + ĝ′c,M

∫
1

(a− λ)(a+ λ)H̃2
C(λ)

dλ

}
(4.30)

where H̃C(λ) stands for

H̃C(λ) = e
c

2

√
ǫ(a−λ)HC

(
2ca

√
ǫ, 0, 0, ac2N−,−

1

4
(ǫa2 + 2aN− + 4M)c2,

1

2

(
1− λ

a

))
. (4.31)

In equations (4.30) and (4.31), N− = n2 − n1 and ĝc,M , ĝ
′
c,M are two constants in λ. The

power series expansion of H̃C(λ) is

H̃C(λ) = 1 −
(
aN−c2

4
+
Mc2

2
+
ǫa2c2

8

)(
1 − λ

a

)
+

+

(
ǫa2c2

32
− Mc2

8
+
ǫ2a4c4

256
+
ǫa3c4N−

64
+
c4M2

16
+
ǫa2c4M

32
+
ac4N−M

16
+

+
a2c4N2

−
64

)(
1 − λ

a

)2

+O(λ3). (4.32)
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Hence we obtain

G(λ) = H̃C(λ)

{
gc,M + g′c,M ln

∣∣∣∣1 − λ

a

∣∣∣∣
}

+ g′c,M

∞∑

n=1

dn

(
1 − λ

a

)n
(4.33)

where gc,M , g
′
c,M and dn’s are constants in λ. The first few dn’s are

d1 =
1

2
+Mc2 +

ǫa2c2

4
+
aN−c2

2

d2 =
Mc2

8
− ǫa2c2

32
+

1

8
− 3ǫ2a4c4

256
− 3ǫa3c4N−

64
−

− 3c4M2

16
− 3ǫa2c4M

32
− 3ac4N−M

16
− 3a2c4N2

−
64

. (4.34)

The same approach can be used to find the solution to equation (4.29). We find

F (µ) = H̃C(µ)

{
f̂c,M + f̂ ′c,M(µ)

∫
1

(µ− a)(a+ µ)H̃2
C(µ)

dµ

}
(4.35)

where H̃C(µ) stands for

H̃C(µ) = e
c

2

√
ǫ(a−µ)HC

(
2ca

√
ǫ, 0, 0, ac2N+,−

1

4
(ǫa2 + 2aN+ + 4M)c2,

1

2

(
1− µ

a

))
. (4.36)

In equation (4.36), N+ = n1 + n2 which yields the power series expansion as

H̃C(µ) = 1 −
(
aN+c

2

4
+
Mc2

2
+
ǫa2c2

8

)(
1 − µ

a

)
+

+

(
ǫa2c2

32
− Mc2

8
+
ǫ2a4c4

256
+
ǫa3c4N+

64
+
c4M2

16
+
ǫa2c4M

32
+
ac4N+M

16
+

+
a2c4N2

+

64

)(
1 − µ

a

)2

+O(µ3). (4.37)

So, we obtain

F (µ) = H̃C(µ)

{
fc,M + f ′c,M ln

∣∣∣1 − µ

a

∣∣∣
}

+ f ′c,M

∞∑

n=1

bn

(
1 − µ

a

)n
(4.38)

where bn’s are given by (4.34) upon replacing N− by N+. In addition to the asymptotic

solution, given by (4.24) for far-zone r ≫ a, as well as the solution near NUT charges (near-

zone), given by (4.33) and (4.38), we can obtain the solution to equation (4.8) (or (4.27))

in intermediate-zone for any values of r and θ (or any values of µ and λ). The form of

our intermediate-zone looks like the last summation term in (4.33) or (4.38). Hence, we

find the most general solution to equation (4.27) (or equivalently to equation (4.8) after

coordinate transformations (4.25) and (4.26))

R(r, θ) =

{
H̃C(µ)

{
fc,M + f ′c,M ln

∣∣∣1 − µ

a

∣∣∣
}
δa,µ0

+ f ′c,M

∞∑

n=0

bn,µ0

(
1 − µ

µ0

)n}
×

×
{
H̃C(λ)

{
gc,M + g′c,M ln

∣∣∣∣1 − λ

a

∣∣∣∣
}
δa,λ0

+ g′c,M

∞∑

n=0

dn,λ0

(
1 − λ

λ0

)n}
(4.39)
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Figure 5. The first bracket in (4.39) as a function of µ− a = 1

z
.

Figure 6. The second bracket in (4.39) as a function of λ.

where

µ =
√
r2 + a2 + 2ar cos θ + r (4.40)

λ =
√
r2 + a2 + 2ar cos θ − r (4.41)

and µ0 ≥ a, |λ0| ≤ a. In (4.39), d0,a = 0 and dn>0,a are given by (4.34). The other

coefficients are listed in appendix B. In figures 5 and 6, we plot the slices of the most

general solution (4.39) at λ =const. and µ =const. respectively, for different values of

separation constant c.

Moreover, in addition to the general solution (4.39), we can easily obtain another inde-

pendent solution by changing the separation constant c to ic in equations (4.10) and (4.11).

In this case, we have

d2f(z)

dz2
+ c2

(
ǫ

z4
+
N

z3
− M

z2

)
f(z) = 0 (4.42)

d2g(θ)

dθ2
+

cos θ

sin θ

dg(θ)

dθ
+ c2(M − ñ2 cos θ)g(θ) = 0 (4.43)
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Figure 7. Two independent solutions in (4.44) at fixed ξ.

where we changed M to −M for convenience and z = 1
r . The second solution then, is

given by

R̃(r, θ) =
1

r

{
Cc,WWW

(
− icN

2
√
ǫ
,

√
1 + 4Mc2

2
, 2ic

√
ǫr

)
+

+Cc,MWM

(
− icN

2
√
ǫ
,

√
1 + 4Mc2

2
, 2ic

√
ǫr

)}
×

×HC

(
0, 0, 0,−2ñ2c

2,−(M − ñ2)c
2,

1

2
ξ

)
. (4.44)

In figure 7, the solution (4.44) at a constant ξ has been plotted. The most general solution

to equation (4.8) after analytic continuation of c is given by R̃(r, θ) = F̃ (µ)G̃(λ). We find

G̃(λ) = ˜̃HC(λ)

{
ˆ̃gc,M + ˆ̃g′c,M

∫
1

(a− λ)(a+ λ) ˜̃HC(λ)
dλ

}
(4.45)

where ˜̃HC(λ) stands for

˜̃HC(λ) = e
ic

2

√
ǫ(a−λ)HC

(
2ica

√
ǫ, 0, 0,−ac2N−,

1

4
(ǫa2 +2aN−−4M)c2,

1

2

(
1− λ

a

))
(4.46)

and finally we obtain

G̃(λ) = ˜̃HC(λ)

{
g̃c,M + g̃′c,M ln

∣∣∣∣1 − λ

a

∣∣∣∣
}

+ g̃′c,M

∞∑

n=1

d̃n

(
1 − λ

a

)n
. (4.47)

In (4.47), g̃c,M , g̃
′
c,M and d̃n’s are constants. The first few d̃n’s are

d̃1 =
1

2
+Mc2 − ǫa2c2

4
− aN−c2

2

d̃2 =
Mc2

8
+
ǫa2c2

32
+

1

8
− 3ǫ2a4c4

256
− 3ǫa3c4N−

64
− 3c4M2

16
+

+
3ǫa2c4M

32
+

3ac4N−M
16

− 3a2c4N2
−

64
. (4.48)
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By the same method, we can find the function F̃ (µ), hence we get the most general

solution as

R̃(r, θ) =

{
˜̃HC(µ)

{
f̃c,M + f̃ ′c,M ln

∣∣∣1 − µ

a

∣∣∣
}
δa,µ0

+ f̃ ′c,M

∞∑

n=0

b̃n,µ0

(
1 − µ

µ0

)n}
×

×
{

˜̃HC(λ)

{
g̃c,M + g̃′c,M ln

∣∣∣∣1 − λ

a

∣∣∣∣
}
δa,λ0

+ g̃′c,M

∞∑

n=0

d̃n,λ0

(
1 − λ

λ0

)n}
. (4.49)

We should note that the y dependence of M2-brane metric function is

Ỹ (y) ∼ K1(cy)

y
. (4.50)

So, the second M2-brane metric function is

H̃(y, r, θ) = 1 +QM2

∫ ∞

0
dc

∫ ∞

0
dMỸ (y)R̃(r, θ). (4.51)

We consider now the Gibbons-Hawking space with k = 2 (4.1) with ǫ = 0 in (4.3) (or

equivalently the metric (3.2)). We should mention that despite some numerical solutions

for the M-brane metric function (with embedded Eguchi-Hanson transverse metric (3.2))

have been found in [7], the exact closed analytic form for the M-brane function hasn’t

yet been found. Our method in this paper allows to construct the exact solutions for the

M-brane function with embedded Eguchi-Hanson space. In the limit of r ≫ a, the solution

to (4.10) (with ǫ = 0) is given by

f(r) =
fc,MK√

1+4Mc2

(
2c
√
Nr
)

√
r

(4.52)

where N = n1 + n2, in exact agreement with the numerical result of [7]. The ex-

act M-brane function is given by equation (4.39) where ǫ = 0 should be considered in

H̃C(λ), H̃C(µ), fc,M , gc,M , f
′
c,M , g

′
c,M , dn and bm. Changing c to ic generates the second set

of solutions that in the limit of r ≫ a yields

f̃(r) =
f̃c,MJ√1+4Mc2(2c

√
Nr) + f̃ ′c,MY

√
1+4Mc2(2c

√
Nr)

√
r

. (4.53)

We note that the general solution of the metric function could be written as a superposition

of the solutions with separation constants c and M . For example, the general first set of

solution (corresponding to embedded Gibbons-Hawking space with k = 2 and ǫ 6= 0) is

H(y, r, θ) = 1 +QM2

∫ ∞

0
dc

∫ ∞

0
dM

J1(cy)

y
×

×
{
H̃C(µ)

{
fc,M + f ′c,M ln

∣∣∣1 − µ

a

∣∣∣
}
δa,µ0

+ f ′c,M

∞∑

n=0

bn,µ0

(
1 − µ

µ0

)n}
×

×
{
H̃C(λ)

{
gc,M + g′c,M ln

∣∣∣∣1 − λ

a

∣∣∣∣
}
δa,λ0

+ g′c,M

∞∑

n=0

dn,λ0

(
1 − λ

λ0

)n}
. (4.54)
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As we notice, the solution (4.54) depends on four combinations of constants fc,M , f
′
c,M

and gc,M , g
′
c,M in form of fg, f ′g, fg′ and f ′g′ which each combination has dimension of

inverse charge (or inverse length to six). Hence, the functional form of each constant could

be considered as an expansion of the form c3+2βMβ where β ∈ Z+. Moreover we should

mention the meaning of µ0 and λ0 in equation (4.54) that have dimensions of length. We

recall that the near-zone solutions (4.33) and (4.38) are given partly by series expansions

around r ≃ a. The intermediate-zone solutions are given by similar power series expansions

(with substitutions a → λ0 and dn → dn,λ0
in (4.33) and a → µ0 and bn → bn,µ0

in (4.38)

around some fixed points, denoted by µ0 and λ0. To calculate numerically the membrane

metric function (4.54) at any µ, λ (or equivalently any r and θ), we consider some fixed

values for µ0 and λ0 (see appendix B).

Dimensional reduction of M2-brane metric (4.4) with the metric functions (for exam-

ple (4.54)) along the coordinate ψ of the metric (4.1) gives type IIA supergravity metric

ds210 = H−1/2(y, r, θ)V −1/2
ǫ (r, θ)

(
−dt2 + dx2

1 + dx2
2

)
+

+H1/2(y, r, θ)V −1/2
ǫ (r, θ)

(
dy2 + y2dΩ2

3

)
+H1/2(y, r, θ)V 1/2

ǫ (r, θ)(dr2 + r2dΩ2
2)

(4.55)

which describes a localized D2-brane at y = r = 0 along the world-volume of D6-brane,

for any choice of constants in the form of c3+2βMβ where β ∈ Z+. The other fields in ten

dimensions are NSNS fields

Φ =
3

4
ln

{
H1/3(y, r, θ)

Vǫ(r, θ)

}
(4.56)

Bµν = 0 (4.57)

and Ramond-Ramond (RR) fields

Cφ = ω(r, θ) (4.58)

Atx1x2
=

1

H(y, r, θ)
. (4.59)

The intersecting configuration is BPS since it has been obtained by compactification along

a transverse direction from the BPS membrane solution with harmonic metric function (for

example (4.54)) [18]. Moreover, in section 7, we use the Killing spinor equation (2.11) to

calculate how much supersymmetry is preserved by M2-brane solutions in eleven dimen-

sions. We conclude that half of the supersymmetry is removed by the projection operator

that is due to the presence of the brane, and another half is removed due to the self-dual

nature of the Gibbons-Hawking metric. Hence embedding any Gibbons-Hawking metric

into an eleven dimensional M2-brane metric preserves 1/4 of the supersymmetry.
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5 M5 solutions over Gibbons-Hawking space

The eleven dimensional M5-brane metric with an embedded Gibbons-Hawking metric has

the following form

ds211 = H(y, r, θ)−1/3
(
−dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4 + dx2

5

)
+

+H(y, r, θ)2/3
(
dy2 + ds2GH

)
(5.1)

with field strength components

Fψφry =
α

2
sin(θ)

∂H

∂θ

Fψφθy = −α
2
r2 sin(θ)

∂H

∂r

Fψφθr =
α

2
r2 sin(θ)V (r, θ)

∂H

∂y
. (5.2)

We consider the M5-brane which corresponds to α = +1; the α = −1 case corresponds to

an anti-M5 brane.

The metric (5.1) is a solution to the equations (2.1) and (2.2), provided H (y, r, θ) is a

solution to the differential equation

2r
sin θ

Vǫ(r, θ)

∂H

∂r
+

cos θ

Vǫ(r, θ)

∂H

∂θ
+ r2 sin θ

∂2H

∂y2
+

sin θ

Vǫ(r, θ)

{
∂2H

∂θ2
+ r2

∂2H

∂r2

}
= 0. (5.3)

This equation is straightforwardly separable upon substituting

H(y, r, θ) = 1 +QM5Y (y)R(r, θ) (5.4)

where QM5 is the charge on the M5-brane. The solution to the differential equation for

Y (y) is

Y (y) = cos(cy + ς) (5.5)

and the differential equation for R(r, θ) is the same equation as (4.8). Hence the most

general M5-brane function (corresponding to embedded Gibbons-Hawking space with k = 2

and ǫ 6= 0) is given by

H(y, r, θ) = 1 +QM5

∫ ∞

0
dc

∫ ∞

0
dM cos(cy + ς) ×

×
{
H̃C(µ)

{
fc,M + f ′c,M ln

∣∣∣1 − µ

a

∣∣∣
}
δa,µ0

+ f ′c,M

∞∑

n=0

bn,µ0

(
1 − µ

µ0

)n}
×

×
{
H̃C(λ)

{
gc,M + g′c,M ln

∣∣∣∣1 − λ

a

∣∣∣∣
}
δa,λ0

+ g′c,M

∞∑

n=0

dn,λ0

(
1 − λ

λ0

)n}
. (5.6)

Similar result holds for embedded Gibbons-Hawking space with k = 2 and ǫ = 0. The

solution (8.10) depends on four combinations of constants in form of fg, f ′g, fg′ and f ′g′

which each combination should have dimension of inverse length. Hence, the functional
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form of each constant could be considered as an expansion of the form c1/2+2βMβ where

β ∈ Z+. As with M2-brane case, reducing (5.1) to ten dimensions gives the following

NSNS dilaton

Φ =
3

4
ln

{
H2/3(y, r, θ)

Vǫ(r, θ)

}
. (5.7)

The NSNS field strength of the two-form associated with the NS5-brane, is given by

H(3) = Fφyrψdφ ∧ dy ∧ dr + Fφyθψdφ ∧ dy ∧ dθ + Fφrθψdφ ∧ dr ∧ dθ (5.8)

where the different components of 4-form F , are given by (5.2). The RR fields are

C(1) = ω(r, θ) (5.9)

Aαβγ = 0 (5.10)

where Cα is the field associated with the D6-brane, and the metric in ten dimensions is

given by:

ds210 = V −1/2
ǫ (r, θ)

(
−dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4 + dx2

5

)
+H(y, r, θ)V −1/2

ǫ (r, θ)dy2 +

+H(y, r, θ)V 1/2
ǫ (r, θ)

(
dr2 + r2dΩ2

2

)
. (5.11)

From (5.8), (5.9), (5.10) and the metric (5.11), we can see the above ten dimensional metric

is an NS5⊥D6(5) brane solution. We have explicitly checked the BPS 10-dimensional

metric (5.11), with the other fields (the dilaton (5.7), the 1-form field (5.9), and the NSNS

field strength (5.8)) make a solution to the 10-dimensional supergravity equations of motion.

As we discuss in section 7, the solution (5.1) preserves 1/4 of the supersymmetry.

6 M2-branes with two transverse Gibbons-Hawking spaces

We can also embed two four dimensional Gibbons-Hawking spaces into the eleven dimen-

sional membrane metric. Here we consider the embedding of two double-NUT (or two

double-center Eguchi-Hanson) metrics of the form (4.1) with ǫ 6= 0 (or ǫ = 0). The M-

brane metric is

ds211 = H(y, α, r, θ)−2/3
(
−dt2 + dx2

1 + dx2
2

)
+H(y, α, r, θ)1/3

(
ds2GH(1) + ds2GH(2)

)
(6.1)

where dsGH(i), i = 1, 2 are two copies of the metric (4.1) with coordinates (r, θ, φ, ψ) and

(y, α, β, γ). The non-vanishing components of four-form field are

Ftx1x2x = − 1

2H2

∂H(y, α, r, θ)

∂x
(6.2)

– 17 –



J
H
E
P
1
2
(
2
0
0
9
)
0
3
9

where x = r, θ, y, α. The metric (6.1) and four-form field (6.2) satisfy the eleven dimensional

equations of motion if

2ry sin(α) sin(θ)

{
Vǫ(r, θ)y

∂H

∂r
+ Vǫ(y, α)r

∂H

∂y

}
+

+ sin(α)y2 cos(θ)Vǫ(r, θ)
∂H

∂θ
+ r2 sin(θ) cos(α)Vǫ(y, α)

∂H

∂α
+

+r2 sin(α)y2 sin(θ)

{
Vǫ(r, θ)

∂2H

∂r2
+ Vǫ(y, α)

∂2H

∂y2

}
+

+ sin(θ) sin(α)

{
r2Vǫ(y, α)

∂2H

∂α2
+ y2Vǫ(r, θ)

∂2H

∂θ2

}
= 0 (6.3)

where Vǫ(y, α) = ǫ + n3

y + n4√
y2+b2+2by cos(α)

. The equation (6.3) is separable if we set

H(y, α, r, θ) = 1 +QM2R1(y, α)R2(r, θ). This gives two equations

2xi
∂Ri
∂xi

+ x2
i

∂2Ri
∂x2

i

+
cos yi
sin yi

∂Ri
∂yi

+
∂2Ri
∂2yi

= uic
2x2
iVǫ(xi, yi)Ri (6.4)

where (x1, y1) = (y, α) and (x2, y2) = (r, θ). There is no summation on index i and

u1 = +1, u2 = −1, in equation (6.4). We already know the solutions to the two differential

equations (6.4) as given by (4.39) and (4.49), hence the most general solution to (6.3) is

H(y, α, r, θ) = 1 +QM2

∫ ∞

0
dc

∫ ∞

0
dM

∫ ∞

0
dM̃R(y, α)R̃(r, θ). (6.5)

We note that changing c to ic in (6.4) makes a second solution given by replacements

R(y, α) to R̃(y, α) and R̃(r, θ) to R(r, θ) in (6.5). However the second solution is not

independent of the first one.

We can choose to compactify down to ten dimensions by compactifying on either ψ or

γ coordinates. In the first case, we find the type IIA string theory with the NSNS fields

Φ =
3

4
ln

(
H1/3

Vǫ(r, θ)

)
(6.6)

Bµν = 0 (6.7)

and RR fields

Cφ = ω(r, θ) (6.8)

Atx1x2
= H(y, α, r, θ)−1. (6.9)

The metric is given by

ds210 = H(y, α, r, θ)−1/2Vǫ(r, θ)
−1/2 (−dt2 + dx2

1 + dx2
2

)
+

+H(y, α, r, θ)1/2Vǫ(r, θ)
−1/2

(
ds2GH(1)

)
+

+H(y, α, r, θ)1/2Vǫ(r, θ)
1/2 (dr2 + r2

(
dθ2 + sin2(θ)dφ2

))
. (6.10)
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In the latter case, the type IIA fields are in the same form as (6.6), (6.7), (6.8), (6.9)

and (6.10), just by replacements (r, θ, φ, ψ) ⇔ (y, α, β, γ). In either cases, we get a fully lo-

calized D2/D6 brane system. We can further reduce the metric (6.10) along the γ direction

of the first Gibbons-Hawking space. However the result of this compactification is not the

same as the reduction of the M-theory solution (6.1) over a torus, which is compactified

type IIB theory. The reason is that to get the compactified type IIB theory, we should

compactify the T-dual of the IIA metric (6.10) over a circle, and not directly compactify

the 10D IIA metric (6.10) along the γ direction. We note also an interesting result in

reducing the 11D metric (6.1) along the ψ (or γ) direction of the GH(1) (or GH(2)) in

large radial coordinates. As y (or r) → ∞ the transverse geometry in (6.1) locally ap-

proaches R
3 ⊗ S1 ⊗GH(2) (or GH(1) ⊗ R

3 ⊗ S1). Hence the reduced theory, obtained by

compactification over the circle of the Gibbons-Hawking, is IIA. Then by T-dualization of

this theory (on the remaining S1 of the transverse geometry), we find a type IIB theory

which describes the D5 defects. The solutions (6.1) (with ǫ = 0 or ǫ 6= 0) are BPS and also

preserve 1/4 of the supersymmetry, as we show in the next section.

7 Supersymmetries of the solutions

In this section, we explicitly show all our BPS solutions presented in the previous sections

preserve 1/4 of the supersymmetry. Generically a configuration of n intersecting branes

preserves 1
2n of the supersymmetry. In general, the Killing spinors are projected out by

product of Gamma matrices with indices tangent to each brane. If all the projections are

independent, then 1
2n -rule can give the right number of preserved supersymmetries. On

the other hand, if the projections are not independent then 1
2n -rule can’t be trusted. There

are some important brane configurations when the number of preserved supersymmetries

is more than that by 1
2n -rule [19, 20].

As we briefly mentioned in the introduction, the number of non-trivial solutions to the

Killing spinor equation

∂Mε+
1

4
ωabMΓabε+

1

144
Γ npqr
M Fnpqrε−

1

18
ΓpqrFmpqrε = 0 (7.1)

determine the amount of supersymmetry of the solution where the indices M,N,P, . . .

are eleven dimensional world indices and a, b, . . . are eleven dimensional non-coordinate

tangent space indices. The connection one-form is given by ωab = Γabcθ̂
b, in terms of Ricci

rotation coefficients Γabc and non-coordinate basis θ̂a = eaMdx
M where eMa are vielbeins.

The eleven dimensional M-brane metrics (2.3) and (2.7) are ds2 = ηabθ̂
a ⊗ θ̂b in non-

coordinate basis. The connection one-form ωab satisfies torsion- and curvature-free Cartan’s

structure equations

dθ̂a + ωab ∧ θ̂b = 0 (7.2)

dωab + ωac ∧ ωcb = 0 (7.3)

In (7.1), Γa matrices make the Clifford algebra
{
Γa,Γb

}
= −2ηab. (7.4)
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and Γab = Γ[aΓb]. Moreover, ΓM1...Mk = Γ[M1 . . .ΓMn]. A representation of the algebra is

given in appendix C.

For our purposes, we use the thirty two dimensional representation of the Clifford

algebra (7.4), given by [21]

Γi =

[
0 −Γ̃i
Γ̃i 0

]
(i = 1 . . . 8) (7.5)

Γ9 =

[
1 0

0 −1

]
(7.6)

Γ⋆ =

[
0 1

1 0

]
(7.7)

Γ0 = −Γ123456789⋆ (7.8)

We note Γ0123456789⋆ = ǫ0123456789⋆ = 1. For a given Majorana spinor ǫ, its conjugate is

given by ǭ = ǫTΓ0. Moreover we notice that Γ0Γa1a2···an
is symmetric for n = 1, 2, 5 and

antisymmetric for n = 0, 3, 4. The Γ̃i’s in (7.5), the sixteen dimensional representation of

the Clifford algebra in eight dimensions, are given by [22]

Γ̃i =

[
0 Li
Li 0

]
(i = 1 . . . 7) (7.9)

Γ̃8 =

[
0 −1

1 0

]
(7.10)

in terms of Li, the left multiplication by the imaginary octonions on the octonions. The

imaginary unit octonions satisfy the following relationship

oi · oj = −δij + cijkok (7.11)

where cijk is totally skew symmetric and its non-vanishing components are given by

c124 = c137 = c156 = c235 = c267 = c346 = c457 = 1. (7.12)

We take the Li to be the matrices such that the relation (7.11) holds. In other words,

given a vector v = (v0, vi) in R
8, we write v̂ = v0+vjoj , where the effect of left multiplication

is oi (v̂) = v0oi − vi + cijkvjok , we then construct the 8 × 8 matrix (Li)ξζ by requiring

oi (v̂) = (Li)ξζ oξvζ , where ξ, ζ = 0, 1, . . . 7. We consider first the M2-brane solutions

considered in section 4, for example (4.54). Substituting ε = H−1/6ǫ in the Killing spinor

equations (7.1) yields solutions that1

Γtx1x2ǫ = −ǫ (7.13)

and so at most half the supersymmetry is preserved due to the presence of the brane. We

note that if we multiply all the components of four-form field strength, given in (2.4), (2.5)

1In what follows in this section, we show the non-coordinate tangent space indices of Γ’s by

t, x1, x2, · · · , φ, ψ, to simplify the notation.
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and (2.6), by −1, then the projection equation (7.13) changes to Γtx1x2ǫ = +ǫ. The

other remaining equations in (7.1), arising from the left-over terms from ∂M ǫ+ 1
4ωMabΓ

abǫ

portion, are

∂α1
ǫ− 1

2
Γyα1ǫ = 0 (7.14)

∂α2
ǫ− 1

2
[sin(α1)Γ

yα2 + cos(α1)Γ
α1α2 ] ǫ = 0 (7.15)

∂α3
ǫ− 1

2
[sin(α2)(sin(α1)Γ

yα3 + cos(α1)Γ
α1α3) + cos(α2)Γ

α2α3 ] ǫ = 0 (7.16)

∂ψǫ+
1

4r2 sin θ

[
−V 2

(
∂ω

∂θ
Γθφ + r

∂ω

∂r
Γrφ
)

+ r sin θ

(
∂V

∂θ
Γψφ + r

∂V

∂r
Γψr
)]

ǫ = 0 (7.17)

∂θǫ+
1

4r sin θ

[
−V ∂ω

∂θ
Γψφ +

r sin θ

V

(
r
∂V

∂r
− 2V

)
Γrθ
]
ǫ = 0 (7.18)

∂φǫ+
1

4

[
∂(V ω)

∂r
Γψr − 1

rV sin θ

(
V 3ω

∂ω

∂r
− r2 sin2 θ

∂V

∂r
+ 2rV sin2 θ

)
Γrφ −

− 1

r2V sin θ

(
V 3ω

∂ω

∂θ
− r2 sin2 θ

∂V

∂θ
+ 2r2V sin θ cos θ

)
Γθφ +

1

4r

∂(V ω)

∂θ
Γψθ
]
ǫ = 0.

(7.19)

We can solve the first three equations, (7.14), (7.15) and (7.16) by using the Lorentz

transformation

ǫ = exp
{α1

2
Γyα1

}
exp

{α2

2
Γα1α2

}
exp

{α3

2
Γα2α3

}
η. (7.20)

where η is independent of α1, α2 and α3.

To solve equation (7.17), we note that the equation can be written as

∂ψη +
[
f(r, θ)(Γθφ + Γψr) + g(r, θ)(Γrφ − Γψθ)

]
η = 0 (7.21)

where

f(r, θ) =
(r2 + a2 + 2ar cos θ)3/2n1 + an2r

2 cos θ + n2r
3

4(r2 + a2 + 2ar cos θ)1/2{(r2 + a2 + 2ar cos θ)1/2(r + n1) + n2r}2
(7.22)

g(r, θ) =
an2r

2 sin θ

4(r2 + a2 + 2ar cos θ)1/2{(r2 + a2 + 2ar cos θ)1/2(r + n1) + n2r}2
(7.23)

So, the solution to equation (7.21) satisfies

Γψrθφη = η (7.24)

This equation eliminates another half of the supersymmetry provided η is independent of

ψ, too. With this projection operator, (7.18) and (7.19) can be solved to give

η = exp

{
−θ

2
Γψ̂φ̂

}
exp

{
φ

2
Γθ̂φ̂
}
λ (7.25)
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where λ is independent of θ and φ. Finally, we conclude due to two projec-

tions (7.13) and (7.24), embedding Gibbons-Hawking space in M2 metric preserves 1/4

of supersymmetry.

Next, we consider the M5-brane solutions considered in section 5, given by (5.6).

Substituting ε = H−1/12ǫ in the Killing spinor equations (7.1) yields

Γtx1x2x3x4x5ǫ = ǫ (7.26)

We note that for the anti-M5-brane α = −1 in (5.2), the projection equation (7.26) changes

to Γtx1x2x3x4x5ǫ = −ǫ. Moreover, we get three equations for ǫ that are given exactly by

equations (7.17), (7.18) and (7.19). The solutions to these three equations imply

Γψrθφǫ = ǫ (7.27)

and

ǫ = exp

{
−θ

2
Γψ̂φ̂

}
exp

{
φ

2
Γθ̂φ̂
}
ξ (7.28)

where ξ is independent of θ and φ.

So, the two projection operators given by (7.26) and (7.27) show M5-brane solutions

preserve 1/4 of supersymmetry.

Finally we consider how much supersymmetry could be preserved by the solutions (6.1)

with metric function (6.5), given in section 6.

As in the case of M2-brane, we get the projection equation

Γtx1x2ǫ = −ǫ (7.29)

that remove half the supersymmetry, after substituting ε = H−1/6ǫ into the Killing spinor

equations (7.1). The remaining equations could be solved by considering

Γψrθφǫ = ǫ (7.30)

Γα3yα1α2ǫ = ǫ . (7.31)

However, the three projection operators in (7.29), (7.30) and (7.31) are not independent,

since their indices altogether cover all the non-coordinate tangent space. Hence, we have

only two independent projection operators, meaning 1/4 of the supersymmetry is preserved.

8 Decoupling limits of solutions

In this section we consider the decoupling limits for the various solutions we have presented

above. The specifics of calculating the decoupling limit are shown in detail elsewhere (see

for example [23]), so we will only provide a brief outline here. The process is the same for

all cases, so we will also only provide specific examples of a few of the solutions above.

At low energies, the dynamics of the D2 brane decouple from the bulk, with the region

close to the D6 brane corresponding to a range of energy scales governed by the IR fixed

point [24]. For D2 branes localized on D6 branes, this corresponds in the field theory to a
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vanishing mass for the fundamental hyper-multiplets. Near the D2 brane horizon (H ≫ 1),

the field theory limit is given by

g2
YM2 = gsℓ

−1
s = fixed. (8.1)

In this limit the gauge couplings in the bulk go to zero, so the dynamics decouple there.

In each of our cases above, we scale the coordinates y and r such that

Y =
y

ℓ2s
, U =

r

ℓ2s
(8.2)

are fixed (where Y and U , are used where appropriate). As an example we note that this

will change the harmonic function of the D6 brane in the Gibbons-Hawking case to the

following (recall that to avoid any conical singularity, we should have n1 = n2 = n, hence

the asymptotic radius of the 11th dimension is R∞ = n = gsℓs)

Vǫ(U, θ) = ǫ+ g2
YM2N6

{
1

U
+

1√
U2 +A2 + 2AU cos θ

}
(8.3)

where we rescale a to a = Aℓ2s and generalize to the case of N6 D6 branes. We notice

that the metric function H(y, r, θ) scales as H(Y,U, θ) = ℓ−4
s h(Y,U, θ) if the coefficients

fc,M , f
′
c,M , · · · obey some specific scaling. The scaling behavior of H(Y,U, θ) causes then

the D2-brane to warp the ALE region and the asymptotically flat region of the D6-brane

geometry. As an example, we calculate h(Y,U, θ) that corresponds to (4.54). It is given by

h(Y,U, θ) = 32π2N2g
2
YM

∫ ∞

0
dC

∫ ∞

0
dM J1(CY )

Y
×

×
{
H̃C(Ω, gYM)

{
FC,M + F ′

C,M ln

∣∣∣∣1 − Ω

A

∣∣∣∣
}
δA,Ω0

+ F ′
C,M

∞∑

n=0

bn,Ω0

(
1 − Ω

Ω0

)n}
×

×
{
H̃C(Λ, gYM)

{
GC,M +G′

C,M ln

∣∣∣∣1 − Λ

A

∣∣∣∣
}
δA,Λ0

+G′
C,M

∞∑

n=0

dn,Λ0

(
1 − Λ

Λ0

)n}
.

(8.4)

where we rescale c = C/ℓ2s and M = Mℓ4s. We notice that decoupling demands rescaling of

the coefficients fc,M , f
′
c,M , · · · in (4.54) by fc,M = FC,M/ℓ6s, f

′
c,M = F ′

C,M/ℓ6s, · · · . In (8.4),

Ω =
√
U2 +A2 + 2AU cos θ+U and Λ =

√
U2 +A2 + 2AU cos θ−U and we use ℓp = g

1/3
s ℓs

to rewrite QM2 = 32π2N2ℓ
6
p in terms of ℓs given by QM2 = 32π2N2g

4
YM2ℓ

8
s.

The respective ten-dimensional supersymmetric metric (4.55) scales as

ds210 = ℓ2s{h−1/2(Y,U, θ)V −1/2
ǫ (U, θ)

(
−dt2 + dx2

1 + dx2
2

)
+

+h1/2(Y,U, θ)V −1/2
ǫ (U, θ)

(
dY 2 + Y 2dΩ2

3

)
+

+h1/2(Y,U, θ)V 1/2
ǫ (U, θ)(dU2 + U2dΩ2

2)} (8.5)

and so there is only one overall normalization factor of ℓ2s in the metric (8.5). This is the

expected result for a solution that is a supergravity dual of a QFT. The other M2-brane
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and supersymmetric ten-dimensional solutions, given by (4.51), (4.54), (6.5) and (6.10)

have qualitatively the same behaviors in decoupling limit.

We now consider an analysis of the decoupling limits of M5-brane solution given by

metric function (5.6).

At low energies, the dynamics of IIA NS5-branes will decouple from the bulk [25].

Near the NS5-brane horizon (H ≫ 1), we are interested in the behavior of the NS5-branes

in the limit where string coupling vanishes

gs → 0 (8.6)

and

ℓs = fixed. (8.7)

In these limits, we rescale the radial coordinates such that they can be kept fixed

Y =
y

gsℓ2s
, U =

r

gsℓ2s
. (8.8)

This causes the harmonic function of the D6-brane for the Gibbons-Hawking solution (5.11),

change to

Vǫ(r, θ) = ǫ+
N6

ℓs

{
1

U
+

1√
U2 +A2 + 2AU cos θ

}
≡ Vǫ(U, θ) (8.9)

where we generalize to N6 D6-branes and rescale a = Aℓ2sgs.

We can show the harmonic function for the NS5-branes (5.6) rescales according to

H(Y,U, θ) = g−2
s h(Y,U, θ). In fact, we have

H(Y,U, θ) =
πN5ℓ

5
s

g2
s

∫ ∞

0
dC

∫ ∞

0
dM cos(CY + ζ) ×

×
{
H̃C(Ω, ℓs)

{
FC,M + F ′

C,M ln

∣∣∣∣1 − Ω

A

∣∣∣∣
}
δA,Ω0

+ F ′
C,M

∞∑

n=0

bn,Ω0

(
1 − Ω

Ω0

)n}
×

×
{
H̃C(Λ, ℓs)

{
GC,M +G′

C,M ln

∣∣∣∣1 − Λ

A

∣∣∣∣
}
δA,Λ0

+G′
C,M

∞∑

n=0

dn,Λ0

(
1 − Λ

Λ0

)n}
.

(8.10)

where we use ℓp = g
1/3
s ℓs to rewrite QM5 = πN5ℓ

3
p as πN5gsℓ

3
s. To get (8.10), we rescale c =

C/(gsℓ
2
s), M = Mg2

sℓ
4
s and a = Agsℓ

2
s such that h(Y,U, θ) doesn’t have any gs dependence.

In decoupling limit, the ten-dimensional metric (5.11) becomes,

ds210 = V −1/2
ǫ (U, θ)

(
−dt2 + dx2

1 + dx2
2 + dx2

3 + dx2
4 + dx2

5

)
+

+ℓ4s{h(Y,U, θ)V −1/2
ǫ (U, θ)dY 2 + h(Y,U, θ)V 1/2

ǫ (U, θ)
(
dU2 + U2dΩ2

2

)
}. (8.11)

In the limit of vanishing gs with fixed ls (as we did in (8.6) and (8.7)), the decou-

pled free theory on NS5-branes should be a little string theory [26] (i.e. a 6-dimensional

non-gravitational theory in which modes on the 5-brane interact amongst themselves, de-

coupled from the bulk). We note that our NS5/D6 system is obtained from M5-branes by
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compactification on a circle of self-dual transverse geometry. Hence the IIA solution has

T-duality with respect to this circle. The little string theory inherits the same T-duality

from IIA string theory, since taking the limit of vanishing string coupling commutes with

T-duality. Moreover T-duality exists even for toroidally compactified little string theory.

In this case, the duality is given by an O(d, d,Z) symmetry where d is the dimension of

the compactified toroid. These are indications that the little string theory is non-local at

the energy scale l−1
s and in particular in the compactified theory, the energy-momentum

tensor can’t be defined uniquely [27].

As the last case, we consider the analysis of the decoupling limits of the IIB solution

that can be obtained by T-dualizing the compactified M5-brane solution (5.1). The type

IIA NS5⊥ D6(5) configuration is given by the metric (5.11) and fields (5.7), (5.8), (5.9)

and (5.10).

We apply the T-duality [28] in the x1−direction of the metric (5.11), that yields gives

the IIB dilaton field

Φ̃ =
1

2
ln
H

f̃
(8.12)

the 10D type IIB metric, as

d̂s
2

10 = V −1/2
ǫ (r, θ)

(
−dt2 + Vǫ(r, θ)dx

2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5

)
+

+H(y, r, θ)V −1/2
ǫ (r, θ)dy2 +H(y, r, θ)V 1/2

ǫ (r, θ)
(
dr2 + r2dΩ2

2

)
. (8.13)

The metric (8.13) describes a IIB NS5⊥D5(4) brane configuration (along with the dualized

dilaton, NSNS and RR fields).

At low energies, the dynamics of IIB NS5-branes will decouple from the bulk. Near

the NS5-brane horizon (H ≫ 1), the field theory limit is given by

gYM5 = ℓs = fixed (8.14)

We rescale the radial coordinates y and r as in (8.8), such that their corresponding rescaled

coordinates Y and U are kept fixed. The harmonic function of the D5-brane is

Vǫ(r, θ) = ǫ+
N5

gYM5

{
1

U
+

1√
U2 +A2 + 2AU cos θ

}
(8.15)

where N5 is the number of D5-branes.

The harmonic function of the NS5⊥D5 system (8.13), rescales according to

H(Y,U, θ) = g−2
s h(Y,U, θ), where

h(Y,U, θ) = πN5g
5
YM5

∫ ∞

0
dC

∫ ∞

0
dM cos(CY + ζ) ×

×
{
H̃C(µ, gYM5)

{
FC,M + F ′

C,M ln

∣∣∣∣1 − Ω

A

∣∣∣∣
}
δA,Ω0

+ F ′
C,M

∞∑

n=0

bn,Ω0

(
1 − Ω

Ω0

)n}
×

×
{
H̃C(λ, gYM5)

{
GC,MG′

C,M ln

∣∣∣∣1 − Λ

A

∣∣∣∣
}
δA,Λ0

+G′
C,M

∞∑

n=0

dn,Λ0

(
1 − Λ

Λ0

)n}
.

(8.16)
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In this case, the ten-dimensional metric (8.13), in the decoupling limit, becomes

d̃s
2

10 = V −1/2
ǫ (U, θ)

(
−dt2 + Vǫ(U, θ)dx

2
1 + dx2

2 + dx2
3 + dx2

4 + dx2
5

)
+

+g2
YM5h(Y,U, θ){V −1/2

ǫ (U, θ)dY 2 + +V 1/2
ǫ (U, θ)

(
dU2 + U2dΩ2

2

)
}. (8.17)

The decoupling limit illustrates that the decoupled theory in the low energy limit is

super Yang-Mills theory with gYM = ℓs. In the limit of vanishing gs with fixed ls, the

decoupled free theory on IIB NS5-branes (which is equivalent to the limit gs → ∞ of

decoupled S-dual of the IIB D5-branes) reduces to a IIB (1,1) little string theory with

eight supersymmetries.

9 Concluding remarks

The central thrust of this paper is the explicit and exact construction of supergravity

solutions for fully localized D2/D6 and NS5/D6 brane intersections without restricting to

the near core region of the D6 branes. Unlike all the other known solutions, the novel feature

of these solutions is the dependence of the metric function to three (and four) transverse

coordinates. These exact solutions are new M2 and M5 brane metrics that are presented

in equations (4.39), (4.49), (4.51), (4.54), (5.6) and (6.5) which are the main results of

this paper. The common feature of all of these solutions is that the brane function is a

convolution of an decaying function with a damped oscillating one. The metric functions

vanish far from the M2 and M5 branes and diverge near the brane cores.

Dimensional reduction of the M2 solutions to ten dimensions gives us intersecting

IIA D2/D6 configurations that preserve 1/4 of the supersymmetry. For the M5 solutions,

dimensional reduction yields IIA NS5/D6 brane systems overlapping in five directions. The

latter solutions also preserve 1/4 of the supersymmetry and in both cases the reduction

yields metrics with acceptable asymptotic behaviors.

We considered the decoupling limit of our solutions and found that D2 and NS5 branes

can decouple from the bulk, upon imposing proper scaling on some of the coefficients in

the integrands.

In the case of M2 brane solutions; when the D2 brane decouples from the bulk, the

theory on the brane is 3 dimensional N = 4 SU(N2) super Yang-Mills (with eight super-

symmetries) coupled to N6 massless hypermultiplets [29]. This point is obtained from dual

field theory and since our solutions preserve the same amount of supersymmetry, a similar

dual field description should be attainable.

In the case of M5 brane solutions; the resulting theory on the NS5-brane in the limit of

vanishing string coupling with fixed string length is a little string theory. In the standard

case, the system of N5 NS5-branes located at N6 D6-branes can be obtained by dimensional

reduction of N5N6 coinciding images of M5-branes in the flat transverse geometry. In this

case, the world-volume theory (the little string theory) of the IIA NS5-branes, in the

absence of D6-branes, is a non-local non-gravitational six dimensional theory [30]. This

theory has (2,0) supersymmetry (four supercharges in the 4 representation of Lorentz

symmetry Spin(5, 1)) and an R-symmetry Spin(4) remnant of the original ten dimensional

Lorentz symmetry. The presence of the D6-branes breaks the supersymmetry down to
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(1,0), with eight supersymmetries. Since we found that some of our solutions preserve

1/4 of supersymmetry, we expect that the theory on NS5-branes is a new little string

theory. By T-dualization of the 10D IIA theory along a direction parallel to the world-

volume of the IIA NS5, we find a IIB NS5⊥D5(4) system, overlapping in four directions.

The world-volume theory of the IIB NS5-branes, in the absence of the D5-branes, is a

little string theory with (1,1) supersymmetry. The presence of the D5-brane, which has

one transverse direction relative to NS5 world-volume, breaks the supersymmetry down to

eight supersymmetries. This is in good agreement with the number of supersymmetries in

10D IIB theory: T-duality preserves the number of original IIA supersymmetries, which is

eight. Moreover we conclude that the new IIA and IIB little string theories are T-dual: the

actual six dimensional T-duality is the remnant of the original 10D T-duality after toroidal

compactification.

A useful application of the exact M-brane solutions in our paper is to employ them as

supergravity duals of the NS5 world-volume theories with matter coming from the extra

branes. More specifically, these solutions can be used to compute some correlation functions

and spectrum of fields of our new little string theories.

In the standard case of Ak−1 (2,0) little string theory, there is an eleven dimensional

holographic dual space obtained by taking appropriate small gs limit of an M-theory back-

ground corresponding to M5-branes with a transverse circle and k units of 4-form flux on

S3 ⊗ S1. In this case, the supergravity approximation is valid for the (2,0) little string

theories at large k and at energies well below the string scale. The two point function of

the energy-momentum tensor of the little string theory can be computed from classical

action of the supergravity evaluated on the classical field solutions [26].

Near the boundary of the above mentioned M-theory background, the string coupling

goes to zero and the curvatures are small. Hence it is possible to compute the spectrum

of fields exactly. In [27], the full spectrum of chiral fields in the little string theories was

computed and the results are exactly the same as the spectrum of the chiral fields in the

low energy limit of the little string theories. Moreover, the holographic dual theories can

be used for computation of some of the states in our little string theories.

We conclude with a few comments about possible directions for future work. Inves-

tigation of the different regions of the metric (5.1) or alternatively the 10D string frame

metric (8.11) with a dilaton (also for other considered EH and TB cases) for small and large

Higgs expectation value U would be interesting, as it could provide a means for finding

a holographical dual relation to the new little string theory we obtained. Moreover, the

Penrose limit of the near-horizon geometry may be useful for extracting information about

the high energy spectrum of the dual little string theory [31]. The other open issue is

the possibility of the construction of a pp-wave spacetime which interpolates between the

different regions of the our new IIA NS5-branes. Moreover, it would be interesting (and of

course very complicated) to find the exact analytic solutions for the brane functions with

the embedded Gibbons-Hawking spaces with k > 2.
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A The Heun-C functions

The Heun-C function HC(α, β, γ, δ, λ, z) is the solution to the confluent Heun’s differential

equation [32]

H′′
C +

(
α+

β + 1

z
+
γ + 1

z − 1

)
H′
C +

(
µ

z
+

ν

z − 1

)
HC = 0 (A.1)

where µ = α−β−γ+αβ−βγ
2 − λ and ν = α+β+γ+αβ+βγ

2 + δ + λ. The equation (A.1) has two

regular singular points at z = 0 and z = 1 and one irregular singularity at z = ∞.

The HC function is regular around the regular singular point z = 0 and is given by

HC = Σ∞
n=0hn(α, β, γ, δ, λ)zn , where h0 = 1. The series is convergent on the unit disk

|z| < 1 and the coefficients hn are determined by the recurrence relation

hn = Θnhn−1 + Φnhn−2 (A.2)

where we set h−1 = 0 and

Θn =
2n(n− 1) + (1 − 2n)(α − β − γ) + 2λ− αβ + βγ

2n(n + β)
(A.3)

Φn =
α(β + γ + 2(n− 1)) + 2δ

2n(n+ β)
. (A.4)

B Coefficients of series in (4.39)

Here we list some coefficients that appear in (4.39)

b0,µ0>a = 1

b1,µ0>a = −µ0

b2,µ0>a =

{
− µ0

(µ2
0 − a2)

+
c2(ǫµ2

0 + 4M + 2N+µ0)

8(µ2
0 − a2)

}
µ2

0

b3,µ0>a =

{
c2(ǫµ3

0 + 8µ0M + 3N+µ
2
0 +N+a

2 + ǫµ0a
2)

12(µ2
0 − a2)2

+

+
−24µ2

0−8a2−c2ǫµ4
0+c2ǫµ2

0a
2−4c2Mµ2

0+4c2Ma2 − 2c2N+µ
3
0+2c2N+µ0a

2

24(µ2
0−a2)2

}
µ3

0

(B.1)
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d0,|λ0|<a = 1

d1,|λ0|<a = −λ0

d2,|λ0|<a =

{
− c2(ǫλ2

0 + 4M + 2N−λ0)

8(a2 − λ2
0)

+
λ0

(a2 − λ2
0)

}
λ2

0

d3,|λ0|<a =

{
c2(ǫλ3

0 + 8λ0M + 3N−λ2
0 +N−a2 + ǫλ0a

2)

12(λ2
0 − a2)2

+

+
−24λ2

0 − 8a2−c2ǫλ4
0+c2ǫλ2

0a
2−4c2Mλ2

0+4c2Ma2−2c2N−λ3
0+2c2N−λ0a

2

24(a2−λ2
0)

2

}
λ3

0.

(B.2)

The recursion relations that we have used to derive the coefficients (B.1) and (B.2),

both are in the form of

Qn = Q1Qn−1 + Q2Qn−2 + Q3Qn−3 + Q4Qn−4 (B.3)

where n ≥ 2 and Q0 = Q1 = 1. Moreover Qn<0 = 0. The coefficients (B.1) are related to

Q’s by

bn,µ0>a = (−µ0)
nQn (B.4)

and the functions Q depend on ǫ, µ0, n, c, a,M,N+. For (B.2), the relation to Q’s is

dn,|λ0|<a = (−λ0)
nQn (B.5)

where the functions Q depend on ǫ, µ0, n, c, a,M,N−. In both cases, the radius of con-

vergence is large enough to find the membrane function (4.54) at many intermediate-zone

points. As an example, for the choice of a = ǫ = M = 1, c = N+ = 2 and µ0 = 10.75, the

series is divergent for 0.9906 < µ < 20.5093

C Representation of Clifford algebra

The gamma matrices satisfy the Clifford Algebra

{Γa,Γb} = −2ηab (C.1)

where we are using the Lorentzian signature [−1,+1, . . . ,+1]. A representation of the

algebra (C.1) is given by

Γξ = γξ ⊗ 1 (C.2)

and

ΓΞ+4 = γ5 ⊗ Γ̂Ξ (C.3)

where ξ = 0, 1, 2, 3 and Ξ = 0, 1, . . . , 6 denotes the spacetime indices for the tangent space

groups SO(1, 3) and SO(7). The ΓΞ+4 (and Γ̂Ξ) satisfy the anticommutation relations

{ΓΞ+4,ΓΨ+4} = {Γ̂Ξ , Γ̂Ψ } = −2δΞΨ (C.4)
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where the Γ̂Ξ’s are given by

Γ̂0 = iγ0 ⊗ 1

Γ̂i = γi ⊗ 1

Γ̂i+3 = iγ5 ⊗ σi

(C.5)

in terms of the Pauli matrices σi (i = 1, 2, 3), γ0 =

(
0 1

1 0

)
, and γ5 = iγ0γ1γ2γ3.
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